Neuro-p24 plays an essential role in neurite extension: antisense oligonucleotide inhibition of neurite extension in cultured DRG neurons and neuroblastoma cells.
نویسندگان
چکیده
Neuro-p24 is a novel neuronal membrane protein that is specifically localized in neural processes, particularly in growing neurites. To explore the roles of Neuro-p24, we examined the immunocytochemical localization of this protein in cultured neurons during neural induction, and performed an antisense oligonucleotide transfection using two culture models, the mouse dorsal root ganglia (DRG) and the neuro2a neuroblastoma cell line. Intense Neuro-p24 immunoreactivity was observed in the soma and small vesicles in neurites at the early stage of culture, but it gradually disappeared as cultures proceeded. Intense immunoreactivity was often observed at the growing distal end of the neurites. Morphological changes in neurites after Neuro-p24 antisense oligonucleotide transfection were examined in DRG neurons by the continual observation of a group of identical neurons. Affected cells retracted neurites transiently, followed by the re-elongation and branching of newly formed neurites. The control oligonucleotide-treated neurons appeared unaffected. When neuro2a cells were similarly treated with antisense oligonucleotides, the results were similar to those obtained in the DRG neurons. The binding of Neuro-p24 to tubulin was confirmed by both in vivo and in vitro pull-down assays. The present results support our idea that Neuro-p24 plays an essential role in neurite extension through a vesicle transport system via microtubules.
منابع مشابه
Developmentally regulated expression of Neuro-p24 and its possible function in neurite extension.
Process extension is a most marked and characteristic neuronal feature that is observed during the development, regeneration and plasticity of nervous system tissues. Neuro-p24, a novel membranous protein with a molecular weight of 24 kDa, is specifically localized in neurons, particularly in the neurites. Based on its molecular structure and distribution pattern in the brain we proposed that N...
متن کاملMyosin IIA drives neurite retraction.
Neuritic extension is the resultant of two vectorial processes: outgrowth and retraction. Whereas myosin IIB is required for neurite outgrowth, retraction is driven by a motor whose identity has remained unknown until now. Preformed neurites in mouse Neuro-2A neuroblastoma cells undergo immediate retraction when exposed to isoform-specific antisense oligonucleotides that suppress myosin IIB exp...
متن کاملDepletion of 43-kD growth-associated protein in primary sensory neurons leads to diminished formation and spreading of growth cones
The 43-kD growth-associated protein (GAP-43) is a major protein kinase C (PKC) substrate of growing axons, and of developing nerve terminals and glial cells. It is a highly hydrophilic protein associated with the cortical cytoskeleton and membranes. In neurons it is rapidly transported from the cell body to growth cones and nerve terminals, where it accumulates. To define the role of GAP-43 in ...
متن کاملTRPC4 in rat dorsal root ganglion neurons is increased after nerve injury and is necessary for neurite outgrowth.
Canonical transient receptor potential (TRPC) receptors are Ca(2+)-permeable cation channels that have a variety of physiological functions and may be involved in neuronal development and plasticity. We investigated the expression profile of TRPC channels in adult rat dorsal root ganglia (DRG) after nerve injury and examined the role of TRPC4 in neurite outgrowth in cultured DRG neurons. Sciati...
متن کاملLIM kinase and slingshot are critical for neurite extension.
Cofilin and its closely related protein, actin-depolymerizing factor (ADF), are key regulators of actin cytoskeleton dynamics that have been implicated in growth cone motility and neurite extension. Cofilin/ADF are inactivated by LIM kinase (LIMK)-catalyzed phosphorylation and reactivated by Slingshot (SSH)-catalyzed dephosphorylation. Here we examined the roles of cofilin/ADF, LIMKs (LIMK1 and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience research
دوره 50 2 شماره
صفحات -
تاریخ انتشار 2004